Pattern Recognition with Gaussian Mixture Models of Marginal Distributions
نویسندگان
چکیده
منابع مشابه
Pattern Recognition with Gaussian Mixture Models of Marginal Distributions
Precise estimation of data distribution with a small number of sample patterns is an important and challenging problem in the field of statistical pattern recognition. In this paper, we propose a novel method for estimating multimodal data distribution based on the Gaussian mixture model. In the proposed method, multiple random vectors are generated after classifying the elements of the feature...
متن کاملEstimation of Single-Gaussian and Gaussian Mixture Models for Pattern Recognition
Single-Gaussian and Gaussian-Mixture Models are utilized in various pattern recognition tasks. The model parameters are estimated usually via Maximum Likelihood Estimation (MLE) with respect to available training data. However, if only small amount of training data is available, the resulting model will not generalize well. Loosely speaking, classification performance given an unseen test set m...
متن کاملFuzzy Gaussian mixture models for speaker recognition
A fuzzy clustering based modification of Gaussian mixture models (GMMs) for speaker recognition is proposed. In this modification, fuzzy mixture weights are introduced by redefining the distances used in the fuzzy c-means (FCM) functionals. Their reestimation formulas are proved by minimising the FCM functionals. The experimental results show that the fuzzy GMMs can be used in speaker recogniti...
متن کاملMarginal likelihoods for non-Gaussian models using auxiliary mixture sampling
Several new estimators of the marginal likelihood for complex non-Gaussian models are developed. These estimators make use of the output of auxiliary mixture sampling for count data and for binary and multinomial data. One of these estimators is based on combiningChib’s estimatorwith data augmentation as in auxiliarymixture sampling,while the other estimators are importance sampling and bridge ...
متن کاملSkew Gaussian Mixture Models for Speaker Recognition
The current paper proposes skew Gaussian mixture models for speaker recognition and an associated algorithm for its training from experimental data. Speaker identification experiments were conducted, in which speakers were modeled using the familiar Gaussian mixture models (GMM), and the new skewGMM. Each model type was evaluated using two sets of feature vectors, the mel-frequency cepstral coe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2011
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e94.d.317